Search Field Guide
Advanced Search
Montana Animal Field Guide

Montana Field Guides

Great Plains Ponderosa Pine Woodland and Savanna

Google for more images Google for web pages
Provisional State Rank: S4
* (see reason below)

External Links





State Rank Reason
The system is at risk from insects and fire, but somewhat less so than its counterpart in the western part of the state.
 

General Description

These ponderosa pine (Pinus ponderosa) occurrences differ from the Rocky Mountain Ponderosa Pine Woodland and Savanna systems in that they are typically found within the matrix of the Great Plains grassland systems. They are often surrounded by mixed-grass prairie, in places where available soil moisture is higher or soils are more coarse and rocky. Elevation ranges from 1,189 meters (3,900 feet) in southeastern Montana to 1,646 m (5,400 feet) in north-central Montana. Occurrences are usually on east- and north-facing aspects. These woodlands can be physiognomically variable, ranging from very sparse patches of trees on drier sites, to nearly closed-canopy forest stands on north slopes or in draws where available soil moisture is higher.


Diagnostic Characteristics

ridge-summit-upper slope, aridic-sand soil texture, organic A horizon less than 10 cm, Pinus ponderosa with graminoid understory, Pinus ponderosa with shrub understory


Similar Systems

Range
This system is found in northern, central and eastern Montana. It occurs along the Missouri River breaks, around the Little Belts and Snowy Mountains, in south-central Montana between the Bighorns and the Black Hills (along the Tongue and Powder rivers), and in other areas of eastern Montana. In extreme south-eastern Montana, it potentially occurs in the foothills of the Bear Lodge Mountains. In north-central Montana, it occurs in the Bears Paw mountains.

Ecological System Distribution
Approximately 9,895 square kilometers are classified as Great Plains Ponderosa Pine Woodland and Savanna in the 2013 Montana Land Cover layers.  Grid on map is based on USGS 7.5 minute quadrangle map boundaries.



Montana Counties of Occurrence
BIG HORN, BLAINE, CARBON, CARTER, CASCADE, CHOUTEAU, CUSTER, DAWSON, FALLON, FERGUS, GARFIELD, GOLDEN VALLEY, HILL, JUDITH BASIN, MCCONE, MEAGHER, MUSSELSHELL, PARK, PETROLEUM, PHILLIPS, POWDER RIVER, PRAIRIE, ROSEBUD, SHERIDAN, STILLWATER, SWEET GRASS, TOOLE, TREASURE, VALLEY, WHEATLAND, WIBAUX, YELLOWSTONE

Spatial Pattern
Large patch

Environment
This system occurs primarily on gentle to steep slopes along escarpments, buttes, canyons, rock outcrops, or ravines and can grade into one of the Great Plains canyon systems or the surrounding prairie system. Elevation ranges from 1,189 meters (3,900 feet) in southeastern Montana to 1,646 meters (5,400 feet) in north-central Montana. In the eastern Little Belts and Snowy Mountains, these woodlands can occur on the upper slopes. Soils typically range from well-drained loamy sands to sandy loams formed in colluvium, weathered sandstone, limestone, scoria, or eolian sand. The understory may be shrub or graminoid dominated, depending on aspect or site.

Vegetation

Along the Missouri Breaks in north-central Montana, woodlands dominated by Douglas-fir (Pseudotsuga menziesii) are found in the same ecological settings as ponderosa pine, and so are included in this system. In the breaks where it occurs, Douglas-firhas a very open canopy over graminoid undergrowth, predominantly composed of bluebunch wheatgrass (Pseudoroegneria spicata), with few to no shrubs present. In most of the Missouri Breaks, however, ponderosa pine dominates and Rocky Mountain juniper (Juniperus scopulorum) is a common associate. Shrubs associated with ponderosa pine dominated forests include bearberry (Arctostaphylos uva-ursi), creeping Oregon grape (Mahonia repens), soapweed yucca (Yucca glauca), snowberry (Symphoricarpos species), chokecherry (Prunus virginiana), common juniper (Juniperus communis), horizontal juniper (Juniperus horizontalis), serviceberry (Amelanchier alnifolia), skunkbush sumac (Rhus trilobata) and ninebark (Physocarpus species). The herbaceous understory can range from a sparse to a dense layer of species typical of the surrounding prairie system. Mixed-grass species are usually common, such as big bluestem (Andropogon gerardii), sideoats grama (Bouteloua curtipendula), sun sedge (Carex inops ssp. heliophila), threadleaf sedge (Carex filifolia), poverty oatgrass (Danthonia intermedia), prairie junegrass (Koeleria macrantha), green needlegrass (Nassella viridula), roughleaf ricegrass (Oryzopsis asperifolia), and western wheatgrass (Pascopyrum smithii). Common herbaceous forbs include yarrow (Achillea millefolium), pussytoes (Antennaria species), boreal sagewort (Artemisia frigida), arrowleaf balsamroot (Balsamorhiza sagittata), Indian blanket flower (Gaillarida aristata), silky lupine (Lupinus argenteus), crazyweed (Oxytropis species), alpine sweetvetch (Hedysarum alpinum), penstemon (Penstemon species), prairie cinquefoil (Potentilla gracilis), goldenrod (Solidago species) and smooth aster (Symphyotrichum laeve).


Alliances and Associations
Alliances
  • (A.157) Douglas-fir Forest Alliance
  • (A.552) Douglas-fir Woodland Alliance
  • (A.124) Ponderosa Pine Forest Alliance
  • (A.530) Ponderosa Pine Woodland Alliance

Dynamic Processes

Surface fires can be frequent on drier sites and aspects. More mesic sites likely have infrequent stand-replacing fires (every 100-200 years). Grazing by domestic livestock may reduce associated grasses; in cases of extreme overgrazing, cheatgrass (Bromus tectorum) may become established. Wind is not generally an issue, except when trees have been damaged by lightning strikes.


Management

In the absence of natural fire, periodic prescribed burns, selective thinning, and reduction of ladder and basal fuels to prevent crown fires can be used to maintain and restore this system to similar pre-settlement conditions. Thinning understory trees and manually removing ladder fuels and heavy fuels from the base of large trees may be necessary in order to protect old growth from death during prescribed burns.

Periodic burning is used to expose mineral soils, provide nutrient availability, reduce competition, stimulate native grass and forb production, increase basal diameter growth of overstory ponderosa pine, and provide favorable seedbeds. In some cases, especially on sites heavily infested with cheatgrass, frequent prescribed burning at low intensities may stimulate greater cheatgrass cover following the fire, especially if the burn did not kill the seed bank. Increasing the time between prescribed fires may inhibit cheatgrass by increasing surface fuels (both herbaceous and litter), which directly inhibits cheatgrass establishment, and by creating higher intensity fires capable of killing a much greater fraction of the seed bank (Keeley and McGinnis, 2007).

Excessive grazing can result in the loss of the most common perennial grasses and lead to an abundance of exotic grasses in this system. Cheatgrass establishment in low-elevation ponderosa pine and Douglas-fir forests will be enhanced by disturbance that opens the understory, removes litter, or both. (Mack and Pyke 1983). Fall germination and rapid elongation of roots provides cheatgrass with a competitive advantage over native perennial species (Harris 1967). Prolific seed production also contributes to the competitive advantage of this grass over native grasses and associated perennial forbs.


Restoration Considerations
Restoration strategies for this system will depend on fire severity or grazing impacts. Because lightly burned areas recover quite quickly from fire, reseeding is usually not necessary, especially if an intact native herbaceous understory was present before the fire. However, to offset invasion of exotics such as cheatgrass, re-seeding with competitive native grasses may be desirable after a low-intensity or prescribed surface fire. Intense fires that occur during summer months cause considerable damage to native perennial grasses. In cases where there are severe, stand replacing fires, reseeding or replanting efforts may be necessary.

Species Associated with this Ecological System
  • Details on Creation and Suggested Uses and Limitations
    How Associations Were Made
    We associated the use and habitat quality (high, medium, or low) of each of the 82 ecological systems mapped in Montana for vertebrate animal species that regularly breed, overwinter, or migrate through the state by:
    1. Using personal observations and reviewing literature that summarize the breeding, overwintering, or migratory habitat requirements of each species (Dobkin 1992, Hart et al. 1998, Hutto and Young 1999, Maxell 2000, Foresman 2001, Adams 2003, and Werner et al. 2004);
    2. Evaluating structural characteristics and distribution of each ecological system relative to the species’ range and habitat requirements;
    3. Examining the observation records for each species in the state-wide point database associated with each ecological system;
    4. Calculating the percentage of observations associated with each ecological system relative to the percent of Montana covered by each ecological system to get a measure of “observations versus availability of habitat”.
    Species that breed in Montana were only evaluated for breeding habitat use, species that only overwinter in Montana were only evaluated for overwintering habitat use, and species that only migrate through Montana were only evaluated for migratory habitat use.  In general, species were associated as using an ecological system if structural characteristics of used habitat documented in the literature were present in the ecological system or large numbers of point observations were associated with the ecological system.  However, species were not associated with an ecological system if there was no support in the literature for use of structural characteristics in an ecological system, even if point observations were associated with that system.  High, medium, and low habitat quality was assigned based on the degree to which the structural characteristics of an ecological system matched the preferred structural habitat characteristics for each species in the literature.  The percentage of observations associated with each ecological system relative to the percent of Montana covered by each ecological system was also used to guide assignments of habitat quality.  If you have any questions or comments on species associations with ecological systems, please contact Bryce Maxell at bmaxell@mt.gov or (406) 444-3655.

    Suggested Uses and Limitations
    Species associations with ecological systems should be used to generate potential lists of species that may occupy broader landscapes for the purposes of landscape-level planning.  These potential lists of species should not be used in place of documented occurrences of species (this information can be requested at: http://mtnhp.org/requests/default.asp) or systematic surveys for species and evaluations of habitat at a local site level by trained biologists.  Users of this information should be aware that the land cover data used to generate species associations is based on imagery from the late 1990s and early 2000s and was only intended to be used at broader landscape scales.  Land cover mapping accuracy is particularly problematic when the systems occur as small patches or where the land cover types have been altered over the past decade.  Thus, particular caution should be used when using the associations in assessments of smaller areas (e.g., evaluations of public land survey sections).  Finally, although a species may be associated with a particular ecological system within its known geographic range, portions of that ecological system may occur outside of the species’ known geographic range.

    Literature Cited
    • Adams, R.A.  2003.  Bats of the Rocky Mountain West; natural history, ecology, and conservation.  Boulder, CO: University Press of Colorado.  289 p.
    • Dobkin, D. S.  1992.  Neotropical migrant land birds in the Northern Rockies and Great Plains. USDA Forest Service, Northern Region. Publication No. R1-93-34.  Missoula, MT.
    • Foresman, K.R.  2001.  The wild mammals of Montana.  Special Publication No. 12.  Lawrence, KS: The American Society of Mammalogists.  278 p.
    • Hart, M.M., W.A. Williams, P.C. Thornton, K.P. McLaughlin, C.M. Tobalske, B.A. Maxell, D.P. Hendricks, C.R. Peterson, and R.L. Redmond. 1998.  Montana atlas of terrestrial vertebrates.  Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT.  1302 p.
    • Hutto, R.L. and J.S. Young.  1999.  Habitat relationships of landbirds in the Northern Region, USDA Forest Service, Rocky Mountain Research Station RMRS-GTR-32.  72 p.
    • Maxell, B.A.  2000.  Management of Montana’s amphibians: a review of factors that may present a risk to population viability and accounts on the identification, distribution, taxonomy, habitat use, natural history, and the status and conservation of individual species.  Report to U.S. Forest Service Region 1.  Missoula, MT: Wildlife Biology Program, University of Montana.  161 p.
    • Werner, J.K., B.A. Maxell, P. Hendricks, and D. Flath.  2004.  Amphibians and reptiles of Montana.  Missoula, MT: Mountain Press Publishing Company. 262 p.

Original Concept Authors
M.S. Reid

Montana Version Authors
L.K. Vance, T. Luna

Version Date
2/15/2010

References
  • Classification and Map Identifiers

    Cowardian Wetland Classification: Not applicable

    National Vegetation Classification Standard:
    Class Mesomorphic Tree Vegetation (Forest and Woodland)
    Subclass Temperate Forest
    Formation Cool Temperate Forest
    Division Western North America Cool Temperate Forest
    Macrogroup Northern Rocky Mountain Lower Montane and Foothill Forest

    NatureServe Identifiers:
    Element Global ID
    System Code CES303.650, Northwestern Great Plains - Black Hills Ponderosa Pine Woodland and Savanna

    National Land Cover Dataset:
    42: Evergreen Forest

    ReGAP:
    4280: Northwestern Great Plains - Black Hills Ponderosa Pine Woodland and Savanna


  • Additional ReferencesLegend:   View WorldCat Record   View Online Publication
    Do you know of a citation we're missing?
    • Arno, S. F. 1980. Forest fire history in the northern Rockies. Journal of Forestry 78(8):460-465.
    • Harris, G. A. 1967. Some competitive relationships between AGROPYRON SPICATUM and BROMUS TECTORUM. Ecological Monographs 37:89-111.
    • Keeley, J. E., and T. W. McGinnis. 2007. "Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest". INTERNATIONAL JOURNAL OF WILDLAND FIRE. 16 (1): 96-106.
    • Mack, Richard N., and David A. Pyke. 1983. "The Demography of Bromus Tectorum: Variation in Time and Space". The Journal of Ecology. 71 (1): 69-93.
    • Pfister, R. D., B. L. Kovalchik, S. F. Arno, and R. C. Presby. 1977. Forest habitat types of Montana. USDA Forest Service. General Technical Report INT-34. Intermountain Forest and Range Experiment Station, Ogden, UT. 174 pp.

Login Logout
Citation for data on this website:
Great Plains Ponderosa Pine Woodland and Savanna — Northwestern Great Plains - Black Hills Ponderosa Pine Woodland and Savanna.  Montana Field Guide.  Retrieved on September 1, 2014, from http://FieldGuide.mt.gov/displayES_Detail.aspx?ES=4280
 
There are currently 61 active users in the Montana Field Guide.