Search Field Guide
Advanced Search
Montana Animal Field Guide

Montana Field Guides

Rocky Mountain Lodgepole Pine Forest

Google for more images Google for web pages
Provisional State Rank: S3

External Links





 

General Description

This forested system is widespread in upper montane to subalpine zones of the Montana Rocky Mountains, and east into island ranges of north-central Montana and the Bighorn and Beartooth ranges of south-central Montana. These are montane to subalpine forests where the dominance of lodgepole pine (Pinus contorta) is related to fire history and topoedaphic conditions. In Montana, elevation ranges from 975 to 2,743 meters (3,200-9000 feet). These forests occur on flats to slopes of all degrees and aspect, as well as valley bottoms. Fire is frequent, and stand-replacing fires are common. Following stand-replacing fires, lodgepole pine will rapidly colonize and develop into dense, even-aged stands. Most forests in this ecological system occur as early- to mid-successional forests persisting for 50-200 years on warmer, lower elevation forests, and 150-400 years in subalpine forests. They generally occur on dry to intermediate sites with a wide seasonal range of temperatures and long precipitation-free periods in summer. Snowfall is heavy and supplies the major source of soil water used for growth in early summer. Vigorous stands occur where the precipitation exceeds 533 millimeters (21 inches). These lodgepole forests are typically associated with rock types weathering to acidic substrates, such as granite and rhyolite. In west-central Montana ranges such the Big Belts and the Rocky Mountain Front, these forests are found on limestone substrates. These systems are especially well developed on the broad ridges and high valleys near and east of the Continental Divide. Succession proceeds at different rates, moving relatively quickly on low-elevation, mesic sites and particularly slowly in high-elevation forests such as those along the Continental Divide in Montana.


Diagnostic Characteristics

forest and woodland, acidic, shallow ustic soils, organic A horizon greater than 10 cm, Pinus contorta


Similar Systems

Range
This system occurs throughout the Montana Rocky Mountains and the island ranges from valley bottoms west of the Continental Divide to upper subalpine forests.

Ecological System Distribution
Approximately 12,036 square kilometers are classified as Rocky Mountain Lodgepole Pine Forest in the 2013 Montana Land Cover layers.  Grid on map is based on USGS 7.5 minute quadrangle map boundaries.



Montana Counties of Occurrence
BEAVERHEAD, BIG HORN, BLAINE, BROADWATER, CARBON, CASCADE, CHOUTEAU, DEER LODGE, FERGUS, FLATHEAD, GALLATIN, GLACIER, GOLDEN VALLEY, GRANITE, JEFFERSON, JUDITH BASIN, LAKE, LEWIS AND CLARK, LINCOLN, MADISON, MEAGHER, MINERAL, MISSOULA, PARK, PHILLIPS, PONDERA, POWELL, RAVALLI, SANDERS, SILVER BOW, STILLWATER, SWEET GRASS, TETON, WHEATLAND

Spatial Pattern
Matrix

Environment
This system generally occurs on dry to intermediate sites with a wide seasonal range of temperatures and long precipitation-free periods in summer. Snowfall is heavy and supplies the major source of soil water used for growth in early summer. Vigorous stands occur where the precipitation exceeds 533 millimeters (21 inches). These lodgepole forests are typically associated with rock types weathering to acidic substrates, such as granite and rhyolite. In west-central Montana ranges such the Big Belts and the Rocky Mountain Front, these forests are found on limestone substrates. These forests are especially well developed on the broad ridges and high valleys near and east of the Continental Divide. Succession proceeds at different rates, moving relatively quickly on low-elevation, mesic sites and particularly slowly in high-elevation forests such as those along the Continental Divide in Montana.

Vegetation

These forests are dominated by lodgepole pine with shrub, grass, or barren understories. At montane elevations east of the Continental Divide, lodgepole pine stands succeed to Douglas-fir (Pseudotsuga menziesii) forests. In western Montana, there are a number of commonly occurring tree species in later seral stages, including Douglas-fir, western larch (Larix occidentalis), western white pine (Pinus monticola), western red cedar (Thuja plicata), grand fir (Abies grandis) and western hemlock (Tsuga heterophylla). In the subalpine zone, Engelmann spruce (Picea engelmannii), subalpine fir (Abies lasiocarpa) and mountain hemlock (Tsuga mertensiana) commonly succeed lodgepole pine following stand mortality (Pfister et al.,1977). In the productive habitats of western Montana, lodgepole pine stands often decline in a wave of mortality, usually before they are 120 years old.

The shrub stratum may be conspicuous to absent. Common species include bearberry (Arctostaphylos uva-ursi), snowbrush ceanothus (Ceanothus velutinus), twinflower (Linnaea borealis), creeping Oregon grape (Mahonia repens), antelope bitterbrush (Purshia tridentata), birch leaf spiraea (Spiraea betulifolia),Canadian buffaloberry (Shepherdia canadensis), dwarf huckleberry (Vaccinium caespitosum), grouse whortleberry (Vaccinium scoparium), mountain huckleberry (Vaccinium membranaceum), snowberry (Symphoricarpos species) and currant (Ribes species).

Herbaceous layers are generally sparse, but can be moderately dense, and are typically dominated by perennial graminoids such as Columbia needlegrass (Achnatherum nelsonii), pinegrass (Calamagrostis rubescens), Geyer’s sedge (Carex geyeri), Ross’ sedge (Carex rossii), California oatgrass (Danthonia californica), blue wildrye (Elymus glaucus), and Idaho fescue (Festuca idahoensis). Common forbs include yarrow (Achillea millefolium), arnica (Arnica spp.), American pathfinder (Adenocaulon bicolor), queen’s cup beadlily (Clintonia uniflora), silky lupine (Lupinus sericeus) and beargrass (Xerophyllum tenax). Saprophytic species such as coralroot orchid (Corallorhiza spp.), Indian pipe (Moneses uniflora), pinesap (Monotropa hypopithys), and pinedrops (Pterospora andromedea) are often associated with lodgepole pine forests.


Alliances and Associations
Alliances
  • (A.118) Lodgepole Pine Forest Alliance
  • (A.512) Lodgepole Pine Woodland Alliance

Dynamic Processes

Lodgepole pineis an aggressive colonizer and shade-intolerant conifer which usually occurs in lower subalpine forests in the major ranges of the western United States. Establishment is episodic and linked to stand-replacing disturbances, primarily fire. Historically, the frequency of fires varied between 50 and 400 years and their severity resulted in a diverse mosaic of age classes and species mixtures. In the Northern Rockies, severe fires typically have created large expanses of even-aged, pure or mixed species stands of lodgepole pine. Trees with closed, serotinous cones appear to be strongly favored by fire, and allow rapid colonization of fire-cleared substrates (Burns and Honkala, 1990). The incidence of serotinous cones varies within and between varieties of lodgepole pine, but is most prevalent in Rocky Mountain populations. Lodgepole pinestands exhibiting a multi-aged population structure, with regeneration occurring, exhibit a higher proportion of trees bearing non-serotinous cones. Trees with non-serotinous cones may predominate in persistent or climax Rocky Mountain lodgepole pine forests. If serotiny is expressed in these stands, cone polymorphism exists and allows regeneration after non-fire disturbances.

In fire-generated stands of similar age, trees become susceptible to mountain pine beetle (Dendroctonus ponderosae) and lodgepole pine dwarf mistletoe (Arceuthobium americanum) infestations at approximately the same time, resulting in large-scale infestations and mortality. In this system, very large scale, stand-replacing fires have occurred frequently throughout Montana during the past 20 years.


Management
Effects of fire, fire suppression, fuel accumulation, stand development, insects, and disease in these forests interact to control the establishment and maintenance of stands. Because they are often initiated by stand-replacing fire, Rocky Mountain lodgepole pine stands are frequently even-aged. However, stands of similar age frequently differ in density, ranging from open stands of large trees to very dense, stunted "doghair" stands. In the absence of natural fire, periodic prescribed burns and selective cutting and thinning can be used to maintain this system.

Restoration Considerations

Large, prescribed and natural, stand-replacement fires have occurred in forests with high mortality from mountain pine beetle and dwarf mistletoe infestations. Restoration strategies will depend largely on fire severity. Under favorable moisture conditions, seeds released from serotinous cones during the fire germinate on exposed mineral soil and disturbed duff the following spring. Fire creates a favorable seedbed by removing loose organic matter and exposing mineral soil or decomposed organic matter, which encourages germination. Therefore, in light or moderately severe fires, additional restoration practices are not required. Early successional stages following fire in lodgepole pine forests are dominated by an understory of forbs and to a lesser extent, graminoids such as fireweed (Chamerion angustifolium), aster (Aster species), nettleleaf giant hyssop (Agastache urticifolia), and pinegrass (Calamagrostis rubescens).


Species Associated with this Ecological System
  • Details on Creation and Suggested Uses and Limitations
    How Associations Were Made
    We associated the use and habitat quality (high, medium, or low) of each of the 82 ecological systems mapped in Montana for vertebrate animal species that regularly breed, overwinter, or migrate through the state by:
    1. Using personal observations and reviewing literature that summarize the breeding, overwintering, or migratory habitat requirements of each species (Dobkin 1992, Hart et al. 1998, Hutto and Young 1999, Maxell 2000, Foresman 2001, Adams 2003, and Werner et al. 2004);
    2. Evaluating structural characteristics and distribution of each ecological system relative to the species’ range and habitat requirements;
    3. Examining the observation records for each species in the state-wide point database associated with each ecological system;
    4. Calculating the percentage of observations associated with each ecological system relative to the percent of Montana covered by each ecological system to get a measure of “observations versus availability of habitat”.
    Species that breed in Montana were only evaluated for breeding habitat use, species that only overwinter in Montana were only evaluated for overwintering habitat use, and species that only migrate through Montana were only evaluated for migratory habitat use.  In general, species were associated as using an ecological system if structural characteristics of used habitat documented in the literature were present in the ecological system or large numbers of point observations were associated with the ecological system.  However, species were not associated with an ecological system if there was no support in the literature for use of structural characteristics in an ecological system, even if point observations were associated with that system.  High, medium, and low habitat quality was assigned based on the degree to which the structural characteristics of an ecological system matched the preferred structural habitat characteristics for each species in the literature.  The percentage of observations associated with each ecological system relative to the percent of Montana covered by each ecological system was also used to guide assignments of habitat quality.  If you have any questions or comments on species associations with ecological systems, please contact Bryce Maxell at bmaxell@mt.gov or (406) 444-3655.

    Suggested Uses and Limitations
    Species associations with ecological systems should be used to generate potential lists of species that may occupy broader landscapes for the purposes of landscape-level planning.  These potential lists of species should not be used in place of documented occurrences of species (this information can be requested at: http://mtnhp.org/requests/default.asp) or systematic surveys for species and evaluations of habitat at a local site level by trained biologists.  Users of this information should be aware that the land cover data used to generate species associations is based on imagery from the late 1990s and early 2000s and was only intended to be used at broader landscape scales.  Land cover mapping accuracy is particularly problematic when the systems occur as small patches or where the land cover types have been altered over the past decade.  Thus, particular caution should be used when using the associations in assessments of smaller areas (e.g., evaluations of public land survey sections).  Finally, although a species may be associated with a particular ecological system within its known geographic range, portions of that ecological system may occur outside of the species’ known geographic range.

    Literature Cited
    • Adams, R.A.  2003.  Bats of the Rocky Mountain West; natural history, ecology, and conservation.  Boulder, CO: University Press of Colorado.  289 p.
    • Dobkin, D. S.  1992.  Neotropical migrant land birds in the Northern Rockies and Great Plains. USDA Forest Service, Northern Region. Publication No. R1-93-34.  Missoula, MT.
    • Foresman, K.R.  2001.  The wild mammals of Montana.  Special Publication No. 12.  Lawrence, KS: The American Society of Mammalogists.  278 p.
    • Hart, M.M., W.A. Williams, P.C. Thornton, K.P. McLaughlin, C.M. Tobalske, B.A. Maxell, D.P. Hendricks, C.R. Peterson, and R.L. Redmond. 1998.  Montana atlas of terrestrial vertebrates.  Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT.  1302 p.
    • Hutto, R.L. and J.S. Young.  1999.  Habitat relationships of landbirds in the Northern Region, USDA Forest Service, Rocky Mountain Research Station RMRS-GTR-32.  72 p.
    • Maxell, B.A.  2000.  Management of Montana’s amphibians: a review of factors that may present a risk to population viability and accounts on the identification, distribution, taxonomy, habitat use, natural history, and the status and conservation of individual species.  Report to U.S. Forest Service Region 1.  Missoula, MT: Wildlife Biology Program, University of Montana.  161 p.
    • Werner, J.K., B.A. Maxell, P. Hendricks, and D. Flath.  2004.  Amphibians and reptiles of Montana.  Missoula, MT: Mountain Press Publishing Company. 262 p.

Original Concept Authors
R. Crawford, M.S. Reid, G. Kittel

Montana Version Authors
L.K. Vance, T. Luna, S.V. Cooper

Version Date
2/18/2010

References
  • Classification and Map Identifiers

    Cowardian Wetland Classification: Not applicable

    National Vegetation Classification Standard:
    Class Mesomorphic Tree Vegetation (Forest and Woodland)
    Subclass Temperate Forest
    Formation Cool Temperate Forest
    Division Western North America Cool Temperate Forest
    Macrogroup Rocky Mountain Subalpine and High Montane Conifer Forest

    NatureServe Identifiers:
    Element Global ID 28656
    System Code CES306.820, Rocky Mountain Lodgepole Pine Forest

    National Land Cover Dataset:
    42: Evergreen Forest

    ReGAP:
    4237: Rocky Mountain Lodgepole Pine Forest


  • Additional ReferencesLegend:   View WorldCat Record   View Online Publication
    Do you know of a citation we're missing?
    • Burns, R. M., and B. H. Honkala, technical coordinators. 1990a. Silvics of North America: Volume 1. Conifers. USDA Forest Service. Agriculture Handbook 654. Washington, DC. 675 pp.
    • Pfister, R. D., B. L. Kovalchik, S. F. Arno, and R. C. Presby. 1977. Forest habitat types of Montana. USDA Forest Service. General Technical Report INT-34. Intermountain Forest and Range Experiment Station, Ogden, UT. 174 pp.

Login Logout
Citation for data on this website:
Rocky Mountain Lodgepole Pine Forest.  Montana Field Guide.  Retrieved on September 23, 2014, from http://FieldGuide.mt.gov/displayES_Detail.aspx?ES=4237
 
There are currently 18 active users in the Montana Field Guide.